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and the vector s will be called gs and is equal to 
190 ° -t- Z~I or 190 ° -X~[. One can then write the following 
equations directly by an inspection of Fig. 5. 

Op=0  ° + zc/2_+ AOp (modulo re) (A13) 

cos (~0~- ~0p)= cos ~z/2- cos )~, cos )~s (A14) 
sin X'p sin )£ 

cos q/o= cos g ; - c o s  g'p cos re/2 
sin )~, sin re/2 (A 15) 

cos (rc/2-0s)=sin (rc/2-0p) cos A0p. (A16) 

that q ~ -  ~op and ~o belong to the same or different 
quadrants depending respectively on whether the 
senses of the q~ and ~ rotations are the same or dif- 
ferent. 

This set of equations can be written for each of the 
four vectors k, ~, 1 and 1'. These give all the 0 angles 
necessary for all eight vectors of intersection, from 
which proper sets of four vectors must be selected ac- 
cording to Fig. 2. These considerations give (19) to 
(24) and the rules for selecting proper signs and 
branches of the cosine function as stated with these 
equations in the main text. 

In (A13), the double sign is for i=  1 or 2. (A14) and 
(A15) are obtained by application of (A1) on vectors 
~0 axis, p and s and on vectors p, q~ axis and s respec- 
tively. With the introduction of a new variable ep= 
re/2-A 0p, these equations can be rewritten as 

~/p=~tp0___~p (modulo zc) (A17) 

cos (q~s-~Pp)= _ sin Zp sin Zs (A 18) 
COS Zp COS Zs 

cos ~o=  + sin Z ~  _ _ cos. XSco s (%-~0p) (A19) 
cos Zp sm Zp 

sin 0~ 
sin ep -  . (A20) 

cos 0p 

It can be shown by considering all possible sign con- 
ventions and diffractometer settings that the ambi- 
guity in sign in (A19) should be removed by requiring 
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This is the second part of a two-part series. The first part described the technique in the case when the 
symmetry axis is coincident with the instrument ~p axis. This paper describes the procedure to follow when 
the orientation of the symmetry axis is arbitrary. 

Introduction 

In the previous paper (Lee & Ruble, 1977), a pro- 
cedure for the semi-empirical absorption correction 
has been presented for the case where a crystallo- 
graphic twofold axis is coincident with the instrument 
~p axis. However, there are cases where aligning a sym- 
metry axis along the ~p axis presents serious practical 
problems. This will be the case if the crystal is so ill- 

formed that the crystallographic symmetry axis is im- 
possible to identify under microscopic examination. 
In the case of protein crystals, which have to be 
mounted in capillary tubes, the difficulty also arises 
if the shape of the crystal is very anisotropic and also 
such that the symmetry axis runs along the short 
dimension of the crystal. The crystal, in this case, will 
tend to orient itself such that its long dimension is 
parallel to the capillary axis, making it difficult to 
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align the short dimension along the q~-axis. In such 
cases, one may be forced to collect data with the sym- 
metry axis considerably off the q~ axis. 

Even for well shaped crystals, it is rather tedious to 
align the symmetry axis accurately along the q~-axis 
and one wants to know the amount of inaccuracy that 
can be tolerated. This information can be obtained 
only by considering the general case. 

For these reasons, we consider in this paper the 
general case when the symmetry axis is not coincident 
with the ~0 axis. The geometries involved in this case 
can be quite complex and the various angle calcula- 
tions can best be done with a more formal, analytical 
approach. We begin our discussion by developing this 
analytical technique. 

A SEMI-EMPIRICAL A B S O R P T I O N - C O R R E C T I O N  T E C H N I Q U E .  II 

//cos ~0h 0 - sin ~Ph 
M h s :  ~COS Zh sin ~Ph sin Zh cos )~h COS ~Ph (2) / \ s in  Zh sin q~h --COS Zh sin )~h COS Oh 

IvISh = ~ I l h S )  - I = ~ I i h S )  r (3) 

Coordinate transformations 

1. Two kinds of coordinate systems 
It is convenient to define and use the following two 

types of coordinate systems. 
(A) The space-fixed coordinate system S. The posi- 

tive x axis runs from the crystal toward the X-ray 
source, the positive y axis runs from the crystal toward 
the detector when 20 = + 90 °, and the z axis is defined 
so as to complete a right-handed orthogonal coordi- 
nate system. This is similar but not identical to 
Hamilton's (1974) coordinate system D. On the Syntex 
P i  system, the z axis defined in this way runs vertically 
down. 

(B) The crystal-fixed coordinate system h. These are 
fixed to the crystal. One defines one system for each 
reflection h as follows. Turn the diffractometer until 
the crystal is in the diffracting position for the re- 
flection h in the bisecting mode. In general there are 
eight different diffractometer settings at which this 
happens (Hamilton, 1974). We shall arbitrarily choose 
one of these by stipulating that at this position 20 is 
in the range of 0 to 180 °, co [-we use Hamilton's (1974) 
'alternate' definition for this angle] from 0 to 90 °, and 
X from - 9 0  to + 90 °. We shall call this position BPL 
(b_isecting mode, positive 20, and lower hemisphere). 
At this pos i t ion , -0=0 and co=0. Now make an co 
rotation until co=0. The crystal-fixed coordinate 
system h is defined to coincide with the space-fixed 
coordinate system S when the crystal is in this orienta- 
tion. Note that the vector h points toward the positive 
y direction in this coordinate system. 

2. Relation between two coordinate systems 
Turn the diffractometer until co=0, )~=90 °, and 

q~ =0. The matrix that relates the coordinates of any 
one vector in the S and h coordinate systems when 
the crystal is in this orientation is given by (Fig. 1) 

( yS =MSh yh 
Z S Z h / 

(1) 

(xh  (xs  
yh = M h S  yS , 

Z h Z S 

where x h, yh, Z h and x s, yS, z s are the coordinates of 
the arbitrary vector in the coordinate systems h and 
S, respectively, and )~h and q~h are the X and q0 angles 
when the reflection h is in the diffracting position 
BPL. Superscript T in (3) indicates transpose. It 
should be noted that, in arriving at the explicit ex- 
pression (2), we used certain conventions concerning 
the sense of q~ and X rotations. These are the same as 

yh 

×11 

zs.. 

y$ 

° × $  

Fig. 1. Relation between the space-fixed and the crystal-fixed co- 
ordinate systems S and h at co=0 °, X=90 °, and ~o = 0  °. The X 
circle is in the ySzS plane, the q~ axis is along the yS axis which 
points toward the detector when 20= +90  °, and the X axis is 
along the x s axis which points toward the X-ray source. The dif- 
fraction vector h points toward the positive yh axis. The two co- 
ordinate systems can be made to coincide by turning the crystal 
around the q~ axis by an angle ~oh followed by a rotation around the 
)~ axis by an angle Zh - 90 °. After these rotations, a single co rota- 
tion will bring the reflection h in the diffracting position BPL 
(see text). 

q~-axis 

Fig. 2. Relation between the symmetric and the bisecting mode of 
data collection. The vector k is along a twofold symmetry axis 
of the crystal and the vectors h and h' are related by the twofold 
symmetry. In the bisecting mode, ~bh = 0 and the diffraction plane 
of h (shaded) is perpendicular to the plane that contains the q~ 
axis and the vector h. This plane must be rotated about h by an 
angle Oh in order to make it perpendicular to the plane of h and 
k. Similarly, the diffraction plane of h', initially in the bisecting 
mode at ~h' = 0  (shaded), can be brought to be perpendicular to 
the plane of h' and k by rotating it by a (different) angle ~h, about 
h'. After these ~ rotations, the incident and reflected beam 
directions of h' are related to those of h by the twofold symmetry 
about k. 
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those defined by Hamilton (1974). For diffractometer 
systems that use different conventions, the sign of the 
affected angle(s) must be changed before use. 

Let k and h be any two reflections. The relation 
between the two crystal-fixed coordinate systems k and 
h can be described as follows. Let x u, yU, z k and x h, 
yh, z h be the coordinates of one single arbitrary vector 
m these two coordinate systems. Then 

yk = M k h  yh (4) 
Z k h 

w h e r e  M k h =  M ks M sh o r  

metric when the data are collected such that the dif- 
fraction plane of a reflection h (the plane that contains 
h and the incident and reflected beams) is perpendicular 
to the plane that contains h and the symmetry axis 
(Fig. 2). In this mode of data collection, the incident 
and reflected beam directions of h and h' are related 
by the twofold symmetry. In contrast, in the bisecting 
mode of data collection the diffraction plane of h is 
perpendicular to the plane that contains h and the 
q~ axis of the instrument. This latter plane is not always 
coincident with the plane that contains h and the sym- 
metry axis unless the symmetry axis coincides with 
the q~ axis. 

5 COS A (,Ohk 
[I~ kh= COS Zk sin A(ph k 

sin Zk sin A q)hk 

cos Xh sin A qThk 
COS Xk COS Xh COS A(ph k + sin Zk sin Xh 
sin Zk COS Zh COS A~Phk- COS :~k sin Xh 

sin ~h sin A (~Ohk \ 

cos Xk sin Xh COS Aq~hk--sin Xk cos ~h) (5) 
sin Xk sin Xh COS A~Ohk + COS Xk COS Xh 

w h e r e  A(ph k = q7 h - -  q7 k. Obviously 
~ h k  = (~qkh)- 1 .~_ (~kh)T  . (6) 

It is worth noting here the special significance of the 
element kh M22. It is clear from the definition of the 
matrix, (4), that this element is equal to the cosine of 
the angle between the two vectors h and k. Equation 
(5), therefore, gives this angle, Qhk, in terms of the dif- 
fractometer setting angles (at BPL) for the two re- 
flections: 

M kh = cos Ohk = COS Xh COS Xk COS A~Phk + sin Xh sin Zk" 

(7) 

We will be particularly interested in the case where 
k is along the crystallographic b* axis, which we sup- 
pose to be the direction of the twofold rotation sym- 
metry axis, and where h is on the same k level as k. 
In this case we have h = hkl and k = 0k0 and 

Iklb* Ikl2b* (8) 
Mk~ =cos eh-- [h---r - 2 sin 0h 

where 2 is the wavelength of the radiation, 0h is the 
Bragg diffraction angle of h, and the subscript k on 
the angle Q has been suppressed. 

Symmetric mode of data collection 

The absorption-correction scheme detailed in the pre- 
vious paper was based on the observation that the 
incident and reflected beam directions of a given re- 
flection h and its symmetry equivalent h' exactly 
coincided with those of the reflection k=0k0  on the 
same k level at a properly chosen pair of ¢ angles. 
This was true because the crystal was mounted such 
that its symmetry axis b was parallel to the ~p axis 
and the intensities of h and h' were measured in the 
bisecting mode. If the crystal is mounted such that its 
symmetry axis is not parallel to the ~p axis, this con- 
dition can be obtained only when the data are col- 
lected at non-zero 0 angles. We will use the term sym- 

In order to demonstrate the usefulness of the sym- 
metric mode of data collection, it must be shown that 
the incident and reflected beams of reflections h and 
h' lie on the surface of the diffraction cone of k at the 
same k level. This can be shown as follows. First, one 
calculates the coordinates of the unit vectors along the 
incident beam (actually antiparallel to the incident 
beam) and the reflected beam directions of a reflection 
h at some q/ angle eh in the coordinate system h. 
Obviously (Fig. 3) 

xh, (+cOS0hCOS  1 
y~} = sin Oh (9) 
z~'/ _+ cos Oh sin Oh 

where the subscript i indicates that the coordinates 
are for the ray directions. The double sign is for the 
incident (upper sign) and the reflected (lower sign) 
beam directions. [-This equation (and Fig. 3) assumes 
that a positive ¢ rotation advances a right-handed 
screw along the positive h direction. If a diffractometer 
system uses a different convention, the sign of 0 must 
be changed before use.] The angle 0i between a ray 
direction i and the vector k can then be obtained by 
computing the y component of these vectors in the 
coordinate system k with (4); 

y/k = cos Oi = M22 sin Oh 

+COS Oh(ME1 COS eh+M23 sin Oh). (10) 

In this equation, the superscript kh of the matrix 
M kh has been suppressed. 

Now we recognize from Fig. 2 that the Q angles 
of the incident and reflected beam directions of a re- 
flection h are the same when and only when h diffracts 
in the symmetric mode. Inspection of (10) then allows 
one to write 

M 2 1  c o s  O h + M E 3  sin Oh=O, (11) 

o r  

tan eh---- -- M21/M23, (12) 

AC 33A-8 
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as the condition for the symmetric mode of data col- 
lection. (This equation gives two solutions for Oh, 180 ° 
apart from one another. Both are valid solutions.) 

Equation (10) itself becomes 

COS ~i=M22 sin 0h (13) 

which, when combined with (8), becomes 

cos Qi= [kl2b*/2. (14) 

This equation shows that both the incident and re- 
flected beam directions of all reflections h = hkl lie on 
the surface of one cone, the diffraction cone of k = 0k0. 
The combination of this fact and the fact that the 
incident and reflected beam directions of h and h' con- 
form to the twofold symmetry about k ensures that 
it is always possible to find two ~ angles about the 
reflection k at which the ray directions exactly coincide 
with those of h and h' diffracting in the symmetric 
mode. Equation (14) is of course identical to (A11) of 
Lee & Ruble (1977), as it should since the bisecting 
mode and the symmetric mode of data collection are 
identical when the symmetry axis is parallel to the 
~0 axis. 

Absorption-correction procedure 

Based on the observation made in the above section, 
it is now a simple matter to modify the absorption- 
correction scheme of the previous paper so that it is 
applicable to the case of general crystal mounting. 
We again start with the assumption that the trans- 
mission factor of a reflection can be approximated by 

T = R(i)R(r)S(O,#R) (15) 

where the symbols used are the same as in Lee & 
Ruble (1977). This equation is then written for reflec- 
tions h=hk l  and h'=hk7 measured in the symmetric 
mode and also for the reflection k =0k0 measured at 
two appropriate ~ angles, ~ and fiE, at which the 
incident and reflected beam directions coincide with 
those of h and h'. The four equations thus obtained 
can then be combined to give 

F ]hIh' -] 1/2 S(k) '°  
xo= Li~(~g,~) j  s -~ .~ .  (16) 

The angles ~k ~ and @2 are given by (see Appendix) 

@i, = g, °_+5 (modulo ~) (17) 

tan ~,o= _M12/M32 (18) 

tan e = t a n  Oh sin ~h. (19) 

In these equations, i is 1 or 2, @o is the g~k angle when 
the vector h is in the plane bisecting the incident and 
reflected beams of k, M12 and M32 are the elements 
of the matrix M kh given in (5), e is the angle 0h projected 
on the plane perpendicular to k, and Qh is the angle 
between the vectors h and k given in (8). These equa- 
tions reduce to (7) and (8) of Lee & Ruble (1977) when 
the b* axis is parallel to the q~ axis. 

The absorption-correction procedure is basically 
the same as that detailed in Lee & Ruble (1977) except 
that (16) is used instead of(6) of that paper. This entails, 
of course, that the bulk of the data are collected in 
the symmetric mode at ~ angles calculated by (12) 
and that the ~ scan intensity data of k are tabulated 
as a function of ~, instead of ~p. Otherwise the pro- 
cedure is exactly the same as in Lee & Ruble (1977). 

It is perhaps appropriate to note here, however, 
some of the undesirable features of the symmetric mode 
of data collection when the symmetry axis makes a 
large angle with respect to the ~p axis. These can be 
seen by inspection of the matrix elements involved 
in (12). For instance, when Xh = 0, (12) becomes tan ~bh = 
- t a n  A sin A qghk where A = 90 ° -  Xk is the deviation of 
the symmetry axis from the ¢p axis. If A~Phk is near 
90 °, ~h = -  A. However, at X= 0, no y-scan is in fact 
possible. Therefore, unless A = 0, there will usually be 
some reflection for which the symmetric mode of data 
collection is impossible. For crystals such as those of 
the biological macromolecules that have to be en- 
closed in a capillary tube, additional problems exist. 
For those reflections that have to be collected at large 

h,y h 
R 

i h~ I . x h 

Fig. 3. Orientation of the incident (I) and reflected (R) beam direc- 
tions of a reflection h in the coordinate system h. 

yS ~k k 

z s z,J o,  

. xs, xk 

Fig. 4. Orientation of the incident (I) and reflected (R) beam direc- 
tions of a reflection h in the symmetric mode in the coordinate 
system S when the diffractometer is turned until the reflection 
k is in the diffracting position BPL and then turned further by 
an co rotation until o9=0. In this orientation, the crystal-fixed 
coordinate system k coincides with S and the X circle lies in the 
ykzk plane. ~b ° is the angle by which the hk plane must be rotated 
around k to make it coincident with the ySzS plane and A~, is 
the angle between the hk plane and the plane that contains k 
and a ray direction R or I. 
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0-values, the angle between the X-ray beam and the 
capillary tube may become quite small. These reflec- 
tions will then suffer a heavy absorption from the 
capillary. It is therefore desirable that the symmetry 
axis be aligned as closely along the ¢p axis as possible. 

Bisecting-mode approximation 

Commonly available diffractometer softwares utilize 
the bisecting mode of data collection. It then becomes 
important that the symmetry axis be aligned accurately 
along the ~p axis. This alignment is tedious but not 
particularly difficult, once the crystal is mounted with 
its symmetry axis roughly along the ~p axis. The degree 
of accuracy required may be estimated as follows. 

If the symmetry axis is not coincident with the ~p 
axis, data should be collected at non-zero 0 values 
given by (12). The bisecting mode of data collection 
then amounts to assuming that the intensities vary 
little over this 0 range. Inspection of the matrix 
elements involved shows that the maximum 0 value 
occurs at A~0hk-" 90 °, in which case (12) becomes 

tan 0h = tan A/cos Zh (20) 

or for small A 

0 h = A / C O S  Zh (21) 

where A = 9 0  ° - Z k  is the deviation of the symmetry 
axis from the q~ axis. These equations show that the 
worst case occurs when A CPhk=90 ° and  Xh=90 °. In 
fact, when Xh=90 ° (12) gives 0k=A(Phk. Since A rph k 
can take any value, this result shows that if a reflection 
other than the reference reflection occurs at X= 90 °, 
the approximation will fail. For a reflection at A f/ghk : 

90 ° and Zh = 85°, (21) gives Oh = 11"5 A. Assuming that 
the transmission factor does not vary seriously over 
a range of about 10 ° in 0, this result indicates that a 
A value of better than about 1 ° must be achieved if 
the bisecting data collection mode is used. There may 
be a few reflections within 5 ° of the q~ axis and at 
A q~hk = 90 ° for which even this accuracy is inadequate, 
but the number of such reflections will be small. 

This investigation was supported by Grant  Number 
CA 16237, awarded by the National Cancer Institute, 
D H E W  and by Grant  Number  BMS 74-17307 from 
the National Science Foundation. 

A P P E N D I X  

Equations (17) to (19) may be derived in the following 
manner. Consider Fig. 4 which shows the diffraction 

vector of a reflection h =hkl and its incident and re- 
flected beam directions in the symmetric mode. The 
coordinate system shown is the space-fixed system S 
and the crystal orientation is such that the crystal- 
fixed system k =  0k0 coincides with S. The angle be- 
tween h and yS in this crystal orientation is Qh as given 
yby~ (8) and the angle between a beam direction and 

is Qi as given by (14). Since the incident and reflected 
beam directions of k make the same angle Qi with the 
vector k and hence with yS axis, I or R becomes coin- 
cident with a ray direction of k when the crystal is 
rotated around k until it lies in the xSy s plane. The 
amount  of this rotation is 0k or 0 2 of (16). Inspection 
of Fig. 4 gives 

O~,=O°+_AO+rc/2(modulon) (A1) 

in which the double sign is for i=  1 or 2. By introducing 
a new variable 

e=- rc/Z- AO (A2) 

(A1) becomes (17). 
The angle 0 ° is the 0k angle when h is in the ySzS 

plane. It is also the angle that the projection of h on 
the xkz k plane makes with z k axis. Therefore 

tan 0 ° k k = --  Xh/Z h (A3) 

where xh k and z~ are the x and z coordinates of the unit 
vector along h in the coordinate system k. But, since 
h is along the yh axis, (4) gives 

Y~] = {M22~.  (A4) 
Z~/ \M32 / 

Combining (A3) and (A4), one obtains (18). 
The angle A0 is the projection of the angle 90 ° -  Oh 

on the xkz k plane. With equation (A 1) of Lee & Ruble 
(1977) used on vectors k, R, and h, one obtains 

c o s  (re/2-Oh)-  COS Qi COS Qh (A5) 
cos A 0 = sin Q~ sin Qh 

A lengthy but straightforward manipulation of this 
equation with the aid of equations (8), (14), and (A2) 
yields (19). 

References 

HAMILTON, W. C. (1974). International Tables for X-ray 
Crystallography, Vol. IV, pp. 276-279, Birmingham: 
Kynoch Press. 

LEE, B. & RUBLE, J. R. (1977). Acta Cryst. A33, 629-637. 

AC 33A-8" 


